분류 전체보기

    미분과 물리

    미분과 물리

    미분은 뉴턴이 자신의 수학이론을 완성시키기 위해 처음 만든 개념이다. 이 글에서는 미분을 하는 방법보다는 그 자체에 집중해서 과학, 특히 물리학에서 응용하는 방법에 대해 이해해본다. 미분이란? 과학에서는 연속적으로 변화하는 무언가를 분석할 필요가 있다. 변화에 집중해보자. 예를 들어 등가속도 운동을 하는 물체는 다음과 같은 시간-변위 그래프를 가진다. 중3 때 배웠겠지만, 여기서 변위는 시간에 대한 이차함수이다. 시간을 $t$, 변위를 $x$로 해보자. 그래프 위의 두 점을 잡고, 그 선을 잇는 선분을 그어보자. 이때 선분의 기울기는 $\frac{x_2-x_1}{t_2-t_1}$이다. 즉, 변위 변화를 시간 변화로 나눈 것으로 이는 다음과 같이 쓸 수 있다. $\frac{\Delta x}{\Delta t..

    영재학교 모의고사 1 - SSMT

    영재학교 모의고사 1 - SSMT

    Science School Mock Test 1 시험지 —— 안내 —— 위 문제는 영재학교 입학시험의 스타일에 따라 제가 직접 출제한 문제입니다. 총 5문제, 각 문제에는 3개의 소문제가 있습니다. 시험지는 문제지 5 페이지, 답안지 6페이지, 연습지로 이루어져 있습니다. 시험시간은 100분입니다. 모든 시험지는 A3 크기입니다. 인쇄시에는 양면인쇄합니다. —— 응시 유의사항 —— 서술형 답안지는 흑색 연필 또는 흑색 볼펜으로 작성합니다. 답안 수정은 지우개 사용 또는 두 줄 긋고 답안을 작성합니다. 답안지에 불필요한 표시를 하지 마세요. 연습지는 1장 주어지나 필요한 경우 더 요청할 수 있습니다. 연습지에 작성한 내용은 채점하지 않습니다. 답안지의 공간이 부족한 경우 답란에 "뒷면에 계속"이라고 적고,..

    카탈란수의 활용

    카탈란수의 활용

    이전 글 이전 글에서 카탈란 수는 적당한 대응을 통해 많은 문제를 푸는 데 사용할 수 있다고 하였다. 그 문제들의 목록은 다음과 같다. 경로의 수 문제 다각형 나누기 문제 이진트리 문제 괄호 열고 닫기 문제 입출력 문제 한 요소가 다른 요소보다 항상 크게 유지하는 문제 이 글에서는 각 문제를 카탈란 수에 대응시키는 방법에 대해 알아보겠다. 1. 경로의 수 문제 이 문제는 이전 글에서 다루었으니 넘어가겠다. 설명 2. 한 요소가 다른 요소보다 항상 크게 유지하는 문제 같은 개수의 X와 Y를 활용해 만드는 단어 중 단어의 처음에서 X와 Y의 개수를 셌을 때 항상 X의 개수가 Y의 개수 이상인 단어의 개수를 구하여라. 이 문제는 경로의 수 문제로 대응하여 카탈란 수로 대응할 수 있다. 길이가 $2n$인 단어를..

    카탈란 수의 점화식

    카탈란 수의 점화식

    다음 글 이 글의 마지막 부분에서 카탈란 수는 (0, 0)에서 (n, n)까지 $y=x$ 그래프보다 위에 있는 점을 통과하지 않고, 격자점만을 지나며 이동하는 경우의 수라고 하였다. 카탈란 수는 다음 일반항으로 정의되는 수열이다. $C_n=\frac{1}{n+1}{}_{2n}\mathrm{C}_n$ 이 일반항이 어떻게 유도되었는지는 이전 글을 찾아보기 바란다. 이번에는 이 수열의 성질을 응용하는데 초점을 맞출 것이다. 카탈란 수는 다음 점화식을 가지고 있다. $C_{n+1}$$=\displaystyle\sum_{i+j=n}C_i C_j$$=C_0C_n+C_1C_{n-1}$$+\cdots $$+C_{n-1}C_1+C_nC_0$ 이는 카탈란 수가 경로의 수 문제와 대응됨을 생각하면 어렵지 않게 설명할 수 있..

    물체의 충돌로 원주율 근사하기

    물체의 충돌로 원주율 근사하기

    원주율은 지름과 원주가 이루는 비로 그 값은 대략 다음과 같다. $\pi$=3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679 원주율은 무리수이기 때문에 정확한 값을 구할 수는 없고 그 값을 근사해서 사용하는 것이 일반적이다. 근사에는 바젤 문제, 라이프니츠 공식 등 수학적인 방법으로 원주율을 유도하는 방법을 사용한다. 그런데 물리학을 이용해서 물체의 충돌로 원주율을 근사하는 방법이 있다. 질량이 1kg인 물체 A를 준비하고 한쪽에는 벽을, 다른 한쪽에는 질량이 $100^{n}$인 물체 B를 가져다 놓는다. 그리고 물체 B를 A쪽으로 운동시켜 벽과 두 물체가 완전탄성충돌하게..

    제1, 2 코사인정리

    제1, 2 코사인정리

    직각삼각형에서는 다음이 성립한다. $a^2+b^2=c^2$ 피타고라스의 정리로 알려진 이 정리는 직각삼각형에서 직각을 끼고 있는 두 변의 길이를 알면 반대쪽 빗면의 길이를 알 수 있게 해 준다. 그런데 직각 말고 임의의 각에 대해 성립하는 공식이 있다. 이번 글에서는 제1, 2 코사인 법칙에 대해 알아보자. 제1 코사인 법칙 삼각형 $\triangle \mathrm{ABC}$와 각 꼭짓점의 대변의 길이가 $a,\;b,\;c$이다. 이때 다음이 성립한다 $a=b\cos C+c\cos B$ $b=a\cos C+c\cos A$ $c=a\cos B+b\cos A$ 증명 $a=b\cos C+c\cos B$ 하나만 증명하면 나머지는 돌려서 같은 방법으로 증명되니 이 경우 한 가지만 증명해보자. 점 A에서 변 a 쪽..

    피보나치수열의 성질

    피보나치수열의 성질

    피보나치수열은 초등학생도 흔히 접하는 매우 간단한 형태의 수열이다. 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 ... 그런데 이 간단한 수열에도 파고들면 수많은 수학적 의미를 찾을 수 있다. 한번 그 의미를 알아보자. 참고로 $F_n$이 의미하는 바는 $n$번째 피보나치 수로 $F_1=1$, $F_2=1$, $F_3=2$이다. 홀짝성(기우성) 아주 간단한 성질이다. 피보나치수열의 원소는 홀수, 홀수, 짝수, 그리고 반복을 이룬다. 이가 성립하는 이유는 다음과 같다. $F_1=1$ (홀수), $F_2=1$ (홀수)이다. 홀수+홀수=짝수이므로 다음 $F_3$은 짝수이고 $F_4$는 홀수+짝수=홀수가 되어 홀수 $F_5$는 짝수+홀수=홀수가 되어 홀수 $F_6$는 홀수+홀수=짝..

    피보나치수열의 일반항

    피보나치수열의 일반항

    피보나치수열은 초등학생도 흔히 접하는 매우 간단한 형태의 수열이다. 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 ... 피보나치수열을 수학적으로 쓰면 다음과 같다. 초기 조건: $F_1=1$, $F_2=1$ 점화식: $F_n=F_{n-1}+F_{n-2}$($n\geq 3$) 이 정도면 피보나치수열을 사용하는 데는 부족함이 없지만 큰 피보나치수, 가령 $F_{50}$을 계산하기엔 노가다가 심하다. 따라서 이번에는 피보나치수열의 일반항을 구해볼 것이다. 이 글을 읽기 전 동차점화식의 일반항을 먼저 읽어주세요! 이 글에서는 해당 개념을 응용할 것입니다. 항 3개를 사용하는 동차점화식의 일반형은 다음과 같다. $a_n=pa_{n-1}+qa_{n-2}$ 따라서 피보나치수열은 여기서 ..