수학

    원주율의 근사방법

    원주율의 근사방법

    원주율이란, 원에서 지름과 반지름의 길이비로 정의된다. 모든 원에서 이 값은 일정하며, 따라서 상수이다. 원주율이 무리수라는 증명은 이미 존재하는데, 이는 곧 원주율은 원을 하나 그리고, 원주와 반지름의 길이를 실측해서 나타낼 수 없음을 의미한다. 따라서 여타 다른 무리수, 이를테면 $\sqrt{2}$와 같이 $\pi$도 근사를 통해 그 값을 구해야 한다. #include #include #include #include #define BATCH 999999 #define WILL_TRY 1400000 #define SQUARE 14000 #define RND(M) rand()%M #define DOUBLE_SIZE sizeof(double) clock_t start_p, end_p; void approx..

    유클리드 호제법과 디오판토스 방정식

    유클리드 호제법과 디오판토스 방정식

    일반적으로 두 자연수의 최대공약수를 구하기 위해 우리는 두 수를 소인수 분해한다. 예를 들어 두 자연수 $a$와 $b$가 있고 이들을 소인수 분해한 것이 $a=pq^2$이고 $b=p^2q$인 경우 두 수의 최대공약수 $g=pq$이다. 이때 $g=(a,b)=pq$로 쓸 수 있다. 이 방법은 분명 효과적이지만 두 수가 매우 큰 경우 그리 효과적인 방법은 아니다. 이 글에서는 두 수의 최대공약수를 구하는 다른 방법인 유클리드 호제법에 대해 다룬다. 유클리드 호제법 유클리드 호제법은 다음과 같은 정리이다. 두 자연수 $a$와 $b$가 있을 때 $a=bq+r$ ($q,r \in \mathbb{Z}$)라면 $(a,b)=(b,r)$이다. 이에 대한 증명은 다음과 같다. $(a,b)=G$라고 하고 $a=GA$, $b=..

    일정한 차이가 나는 소수

    일정한 차이가 나는 소수

    이 글에서는 일정한 차이가 나는 소수들에 대해 탐구하여 본다. 조금 더 자세히는 다음 성질을 증명한다. 소수 $p$와 자연수 $d$에 대해 $p$, $p+d$, $p+2d$, $\cdots$, $p+(n-1)d$가 모두 소수일 때 $d$는 $n$보다 작은 모든 소수들로 나누어 떨어진다. 증명의 방법 위의 명제를 귀류법으로 증명할 것이다. 즉, $q$가 $n$보다 작은 어떤 소수일 때, $d$가 $q$로 나누어 떨어지지 않는다고 가정해보자. 완전잉여계 증명 증명은 우선 $p$, $p+d$, $p+2d$ $\cdots$ $p+(q-1)d$가 $q$에 대한 완전잉여계임을 보임으로 시작한다. 이는 귀류법으로 증명할 수 있다. 만일 위의 소수들이 $q$에 대해 완전잉여계가 아니라면 $0 \leq i < j \le..

    분할과 분배 Pt. 2

    분할과 분배 Pt. 2

    이전글 이전글에 이어서 이번 글에서는 나머지 2가지 경우에서 공을 상자에 나눠담는 경우를 생각해 볼 것이다. 이전글에서 이어지는 내용도 일부 있으니 파트 1을 먼저 읽고 오는 것을 추천한다. 이 글에서는 상자를 구분할 수 없는 경우에 대해 알아본다. 공을 구분할 수 없고 상자를 구분할 수 없는 경우 $n$개의 같은 공을 $k$개의 같은 상자에 빈상자를 허용하지 않으며 넣는다고 하자. $i$번째 상자에 들어가는 공의 개수를 $n_i$라고 하면 다음과 같은 식이 성립할 것이다. $n_1+n_2+\cdots+n_k=n$, 여기서 $(n_i \geq 1)$, $(i=1, 2, 3, \cdots, k)$ 즉, $n$을 $k$개의 자연수의 합으로 나타내는 경우의 수와 같으며 이를 $p(n,\:k)$라고 한다. 여기..

    분할과 분배 Pt.1

    분할과 분배 Pt.1

    다음글 분할과 분배는 기본적으로 전체를 여러개의 소부분으로 나누는 문제이다. 이를테면 $n$개의 과제를 $k$명이 나눠가지는 경우의 수이다. 분할과 분배는 종류에 따라 8가지로 나뉜다. 공을 상자에 나눠담을 때 1.공을 구분할 수 있는가 2.상자를 구분할 수 있는가 3.빈상자가 있어도 되나이다. 이 8개의 조건이 모여 총 8개의 부분경우를 만든다. 이 글에서는 이중 4가지만을 다루겠다. 공을 구분할 수 있고, 상자를 구분할 수 있는 경우 $n$개의 구분되는 공을 $k$개의 구분되는 상자에 넣는 경우를 본다. 만일 빈 상자를 허용하는 경우, $n$개의 공은 각각 $k$개의 상자로 들어갈 수 있으며, 이는 각각의 공이 $k$개의 선택지를 가지고 있음을 말한다. 즉, 곱의 법칙에서 $k^n$임을 알 수 있다...

    일반항과 점화식

    일반항과 점화식

    < 등비수열과 등차수열 수열에는 일반항과 점화식이라는 개념이 있다. 이전 글을 보았으면 알겠지만 일반항은 수열의 항의 값을 항의 번호로 구하는 일반적인 식이며, 점화식은 구하고자 하는 항의 이전항들로 항의 값을 구하는 식이다. 그 글에서는 일반항과 점화식에 대해 자세히 알아본다. 등차수열과 등비수열의 일반항과 점화식 한 줄로 정리하자면 다음과 같다. ($a$: 일반항, $n$: 항의 번호, $d$: 공차, $r$: 공비) 일반항 점화식 등차수열 $S_n=a+(n-1)d$ $S_n=S_{n-1}+d$ 등비수열 $S_n=ar^{n-1}$ $S_n=rS_{n-1}$ 이미 이전 글에서 유도에 대해 설명했지만 이번에는 그냥 규칙을 찾는 것이 아니라 수학적으로 접근해보겠다. 점화식은 수열의 정의에서 당연하게 유도되..

    등차수열과 등비수열

    등차수열과 등비수열

    일반항과 점화식 > 이번 글에서는 수열 시리즈를 시작하며 가장 기본적인 등차수열, 등비수열에 대해 다룰 것이다 수열의 점화식과 일반항 수열이란 수의 나열이다. 예를 들면 $1, 2, 3, 4, 5 \cdots$는 자연수의 수열이며 $2, 3, 5, 7, 11, 13 ,17 \cdots$는 소수의 수열이다. 수열에는 항이라는 것이 있다. 항이란 수열의 몇 번째 수인지를 묻는 것이다. 예를 들어 수열 ${1, 2, 4, 8, 16, 32 \cdots}$의 제1항은 1, 제2항은 2, 제3항은 4이다. 수학적으로 쓰자면 수열 $a$의 $n$번째 항은 $a_n$으로 쓴다. 첫항의 경우 $a$로 쓸 수도 있다. 일반적으로 수열은 아무 의미없는 수의 나열이 아니라 일정한 규칙을 가지고 수를 나열한다. 그렇기 때문에..

    경우의 수 - 경로의 수 Pt. 2

    경우의 수 - 경로의 수 Pt. 2

    알림: 이 글은 경로의 개수 Pt. 1의 심화 내용입니다. 앞선 글을 이해하지 못한 상태로 이 글을 읽으시면 많이 어려우실 수 있습니다. 우리는 앞서 격자모양의 지도에서 최단거리를 구하는 방법을 탐구하였다. 이번에서도 특별한 경우에서 최단경로를 구해보자. 들어가기 먼저 이번 글에서 내내 다루게 될 한 개의 문제를 소개하겠다. 문제: 왼쪽과 같은 지도가 있다. A에서 B까지의 최단경로 중 푸른색 선분 위의 점을 통과하지 않는 경로의 개수를 구하여라 A점을 제외한 붉은색 선분 위의 점을 통과하지 않는 경로의 개수를 구하여라. 이번 글에서는 위의 문제만 다룰 것이다. 문제의 조건과 상황을 잘 이해하자. 예를 들면 1번의 경우 Fig1-1a와 같은 경로는 되는 경로이며 Fig1-1b와 같은 경로는 되지 않는 경..