수학

    피보나치수열의 성질

    피보나치수열의 성질

    피보나치수열은 초등학생도 흔히 접하는 매우 간단한 형태의 수열이다. 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 ... 그런데 이 간단한 수열에도 파고들면 수많은 수학적 의미를 찾을 수 있다. 한번 그 의미를 알아보자. 참고로 $F_n$이 의미하는 바는 $n$번째 피보나치 수로 $F_1=1$, $F_2=1$, $F_3=2$이다. 홀짝성(기우성) 아주 간단한 성질이다. 피보나치수열의 원소는 홀수, 홀수, 짝수, 그리고 반복을 이룬다. 이가 성립하는 이유는 다음과 같다. $F_1=1$ (홀수), $F_2=1$ (홀수)이다. 홀수+홀수=짝수이므로 다음 $F_3$은 짝수이고 $F_4$는 홀수+짝수=홀수가 되어 홀수 $F_5$는 짝수+홀수=홀수가 되어 홀수 $F_6$는 홀수+홀수=짝..

    피보나치수열의 일반항

    피보나치수열의 일반항

    피보나치수열은 초등학생도 흔히 접하는 매우 간단한 형태의 수열이다. 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 ... 피보나치수열을 수학적으로 쓰면 다음과 같다. 초기 조건: $F_1=1$, $F_2=1$ 점화식: $F_n=F_{n-1}+F_{n-2}$($n\geq 3$) 이 정도면 피보나치수열을 사용하는 데는 부족함이 없지만 큰 피보나치수, 가령 $F_{50}$을 계산하기엔 노가다가 심하다. 따라서 이번에는 피보나치수열의 일반항을 구해볼 것이다. 이 글을 읽기 전 동차점화식의 일반항을 먼저 읽어주세요! 이 글에서는 해당 개념을 응용할 것입니다. 항 3개를 사용하는 동차점화식의 일반형은 다음과 같다. $a_n=pa_{n-1}+qa_{n-2}$ 따라서 피보나치수열은 여기서 ..

    동차점화식의 일반항

    동차점화식의 일반항

    개요 수열에서 점화식이란 이전항을 이용해 다음 항을 알아내는 식이다. 예를 들어 어떤 수열 $a$에 대해 다음 식은 모두 점화식이다. $a_{n+1}=2a_n$ $a_{n+1}=a_n+4$ $a_{n+1}=3a_n+4$ $a_{n}=2a_{n-1}+3a_{n-2}$ 이 중 식 1, 2, 3 꼴의 점화식에서 일반항을 유도하는 방법은 이미 이 글에서 다루었다. 이번 글에서는 4번 형식의 점화식에서 일반항을 구하는 방법에 대해 알아보자. 동차점화식과 비동차점화식 점화식은 꼴에 따라 2가지 형태로 나눌 수 있다. 1번 식과 같은 꼴의 점화식을 "동차점화식"이라고 하고 2번 식과 같은 꼴의 점화식을 비동차점화식이라고 한다. $a_n=k_1 a_{n-1}+k_2 a_{n-2}+\cdots$$+k_m a_{n-m}$..

    RSA 암호화 - RSA의 작동 원리

    RSA 암호화 - RSA의 작동 원리

    RSA 암호화 RSA 암호화 - 개념편 RSA 암호화 - 수학편: RSA와 소수 RSA 암호화 - 수학편: 나머지 계산 RSA 암호화 - RSA의 동작 방식 RSA 암호화 - RSA의 작동 원리 [알림] 이 글은 RSA 암호화 시리즈의 5편입니다. 앞선 편을 모두 읽고 이 편을 읽는 것을 추천합니다! 오일러 정리 RSA 암호화에서는 페르마 소정리가 일반화된 정리 격인 오일러 정리가 핵심 역할을 한다. 오일러 정리 서로소인 두 정수 $a$와 $n$에 대해 $a^{\phi (n)} \equiv 1\:(\mathrm{mod}\:n)$이다. 여기서 $\phi(n)$은 오일러 피 함수로 $n$ 미만의 자연수 중 $n$과 서로소인 수의 개수를 말한다. 오일러 피 함수는 자기 자신보다 작은 자연수 중 자신과 서로소인..

    RSA 암호화 - RSA의 동작 방식

    RSA 암호화 - RSA의 동작 방식

    RSA 암호화 RSA 암호화 - 개념편 RSA 암호화 - 수학편: RSA와 소수 RSA 암호화 - 수학편: 나머지 계산 RSA 암호화 - RSA의 동작 방식 RSA 암호화 - RSA의 작동 원리 [알림] 이 글은 RSA 암호화 시리즈의 4편입니다. 앞선 편을 모두 읽고 이 편을 읽는 것을 추천합니다! RSA의 작동 방식 RSA는 다음 방식으로 작동한다. 키 쌍 생성: 아주 큰 두 소수 $p$, $q$를 생성한다. $N=pq$를 계산한다. $(p-1)(q-1)$과 서로소인 정수 $e$를 하나 정한다. $ed$를 $(p-1)(q-1)$로 나눈 나머지가 1인 정수 $d$를 계산한다. $p$와 $q$, $p-1$, $q-1$은 삭제한다. 공개키는 $N$과 $e$가 되고 비밀키는 $d$가 된다. 3단계에서 $e$..

    RSA 암호화 - 수학편: 나머지 계산

    RSA 암호화 - 수학편: 나머지 계산

    RSA 암호화 RSA 암호화 - 개념편 RSA 암호화 - 수학편: RSA와 소수 RSA 암호화 - 수학편: 나머지 계산 RSA 암호화 - RSA의 동작 방식 RSA 암호화 - RSA의 작동 원리 [알림] 이 글은 RSA 암호화 시리즈의 3편입니다. 앞선 편을 모두 읽고 이 편을 읽는 것을 추천합니다! 특수한 형태의 나머지 연산의 필요성 RSA암호는 나머지 연산을 매우 자주 활용한다. 어떤 정수를 다른 정수로 나누었을 때의 나머지를 구하는 것이다. 컴퓨터 입장에서 나머지 연산은 매우 쉬운 일이다. C언어에서 $a$를 $b$로 나눈 나머지를 계산해서 $c$에 저장하는 코드는 다음 한 줄이면 된다. c=a%b; 이 방법은 매우 효과적이지만 RSA에 사용하기에는 적절하지 못하다. RSA에는 $a^b \equiv..

    RSA 암호화 - 수학편: RSA와 소수

    RSA 암호화 - 수학편: RSA와 소수

    RSA 암호화 RSA 암호화 - 개념편 RSA 암호화 - 수학편: RSA와 소수 RSA 암호화 - 수학편: 나머지 계산 RSA 암호화 - RSA의 동작 방식 RSA 암호화 - RSA의 작동 원리 [알림] 이 글은 RSA 암호화 시리즈의 2편입니다. 앞선 편을 모두 읽고 이 편을 읽는 것을 추천합니다! 비대칭키 암호화의 기본 비대칭키 암호화는 비밀키로 공개키를 알 수는 있지만 공개키로는 비밀키를 알 수 없고, 두 키가 암복호화에 따로따로 사용돼야 하는 한 쌍의 키가 필요하다. 이는 보통 이산대수의 어려움을 통하여 구현된다. 이번 글에서 다룰 RSA는 소인수분해의 난해함을 기초로 보안이 유지된다. 두 소수 $p$와 $q$가 있다. 이 두 수를 곱하여 $pq$를 계산 하는 일은 누구나 쉽게 할 수 있으며 컴퓨..

    삼각형의 넓이를 구하는 8가지 방법

    삼각형의 넓이를 구하는 8가지 방법

    삼각형은 평면 기하에서 매우 기본적인 도형이다. 그만큼 많은 정리들이 있기도 하다. 이 글에서는 이 삼각형의 넓이를 구하는 여러 방법과, 그 증명에 대해 알아본다. 1. 밑변과 높이를 알 때 $S=\frac{1}{2}ah$ 가장 일반적인 삼각형의 넓이 구하는 방법이다. 증명은 생략한다. 2. 두 변과 끼인 각을 알 때 $S=\frac{1}{2}ab \sin\theta$ 이때 높이는 $b\sin\theta$이기 때문에 삼각형의 넓이는 (1)의 방법에 따라 $\frac{1}{2}ab\sin\theta$이다. 3. 정삼각형의 한 변의 길이를 알 때 $S=\frac{\sqrt{3}}{4}a^2$ $\triangle ACH$가 $\angle AHC=90^{\circ}$, $\angle ACH=60^{\circ}$..